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Abstract. From the ring of Godel quaternions, we construct new quaternionic groups and 
a pseudo-Hopf fibration. These can be used to study sigma models valued in a four- 
dimensional hyperboloid. Particular solutions of these models are also given. 

1. Introduction 

In a previous work (Lambert and Piette 1988) we have used the ring of hyperbolic 
complex numbers in order to generate solutions of two-dimensional Minkowskian 
sigma models on particular non-compact manifolds. In the present paper, we will 
show that the ring of hyperbolic quaternions (also called Godel quaternions) can be 
introduced in order to describe sigma models defined on pseudo-Riemannian manifolds 
and valued in the four-dimensional single-sheeted hyperboloid S0(3,2) /  S0(2,2).  

Godel was the first to point out the physical usefulness of hyperbolic quaternions 
when he gave his famous solution of Einstein’s field equation of gravitation (Godel 
1949). In the same spirit, Ozsvath used these quaternions in studying particular classes 
of dust-filled universes (Ozsvath 1970). Looking for the pseudo-meron solution of 
Yang-Mills equations on the hyperboloid S0(2,2)/SO( 1,2),  Hogan used the relation 
between the Lie group SL(2, R) and the set of Godel quaternions of unit norm (Hogan 
1984). In the framework of a non-symmetric theory of gravitation, Godel quaternions 
were also introduced by Moffat to represent geometrical quantities and spinors (Moffat 
1984). Finally, these quaternions have been used to generate physically relevant 
non-bijective canonical transformations (Lambert and Kibler 1988). For the sake of 
completeness, it is worth noting that the ring of Godel quaternions was extensively 
studied in the framework of Clifford algebras and in the theory of real 2-spinors 
(Ilamed and Salingaros 1981). 

The paper is organised as follows. In § 2, we recall the definition and properties 
of the ring Q of Godel quaternions. In § 3, we introduce the group GL( n, Q) and 
study some of its subgroups. We also consider the relations between these subgroups 
and the usual groups 0(2n) ,  O(n,  n )  and Sp(n, R). Using the properties of Q, we 
construct, in 3 4, a pseudo-Hopf fibration and show that it defines a harmonic map 
between the hyperboloids S0(4,4) /S0(3,4)  and S0(3,2) /S0(2,2) .  In § 5, we define 
sigma models valued in the hyperboloid S0(3,2) /S0(2,2) .  Using the results of §§ 3 
and 4 we give equivalent forms of the Lagrangian density of these models. From this, 
it is possible to understand the relation between these models and SL(2, R) gauge field 
theories. In 9 6, finally, we give examples of particular solutions of these sigma models. 

0305-4470/88/122677 + 15$02.50 @ 1988 IOP Publishing Ltd 2677 
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2. Godel quaternions 

Let eo, e , ,  e, and e3 be a base of a four-dimensional real vector space. We define the 
Godel quaternion algebra Q introducing the non-commutative multiplication given by 
the following requirements: 

eOek = f?k = ekeO 

e , e k  = ( - l ) - ' & , k , e , - ( - l ) k s , k e ,  

(eo)2 = eo 

i, j ,  k = 1 ,2 ,3 .  

Let q,, q l ,  q2 and q3 be arbitrary real numbers. The vector 

4 = 90% + 41 el + 42e2 + q 3  e3 (2.1) 
is called a Godel quaternion. 

It is also possible to define another basis of Q using the following vectors: 

ell = (eo+ 4 / 2  e 2 2 = ( e 0 - e 3 ) / 2  (2.2) 

e12 = (e1 + e2)/2 (2.3) 

e l k e r r  = S k r e r s  (2.4) 

e21 = (e,  - e2)/2. 
These satisfy the multiplication law 

i, k, r, s = 1, 2. 

Now, every Godel quaternion q can be expressed as follows: 

= c qikeik 
i,k = 1,2 

where q i k  is an arbitrary real number. 
The proper subalgebras of Q are the algebra R of real numbers generated by e,, 

the algebra @ of usual complex numbers generated by e, and e,, with (e2)2 = -eo, and 
the algebra a( e,)  (respectively a ( e 3 ) )  of hyperbolic complex (or double) numbers 
(Yaglom 1968) generated by e, and e , ,  with ( el), = e, (respectively generated by eo 
and e3, with ( e3)2 = eo). Obviously, a( e , )  is isomorphic to Q( e3). Then, in the following, 
the algebra of hyperbolic complex numbers will be simply denoted by 0. 

Let A be an algebra. We recall that the map j : A + A is an involution (respectively 
an anti-involution) of A if and only if j 2 ( h )  = j ( k )  and j ( g h )  = j ( g ) j ( h )  (respectively 
j ( g h )  = j ( k ) j ( g ) )  for every g and k in A. 

Let us now introduce the Q-conjugated element 4 of q by the following expression: 

(2.6) 4 = qoeo- qlel-  q2e2- 43e3 = 422e11+ 411e22- 412e12- 421ez1. 
The map q + 4 defines an anti-involution of Q. Furthermore, if q = 4 then q is simply 
a real number. It is also possible to define the a-conjugated element 4 of q by 

Q =  40e0-41e1+42e2-43e3= 4 2 2 ~ l l + q I l ~ 2 2 - q 2 l e 1 2 - q l 2 ~ 2 1 .  (2.7) 
The map q + 4' defines an involution of Q. Each element q of Q can be written as follows: 

q = aeo+ be, 

where a = qOe,+ q3e3 and b = q2eo+ q1e3 are hyperbolic complex numbers. In this 
representation, we get - 

$=&,+be2 .  

Then the condition q = Q means that q is an element of @. Finally, let us define the 
@-conjugated element q" of q as follows: 

4* = qoeo - 91 e, - q2e2 + q3 e3 = 41 1 e, I + 422e22 - qlzelz - 421 e21 . (2.8) 
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The map q + q* defines an involution of Q. Each element Q can be expressed by the 
following equation: 

q = ce, + de, 

where c = qoe,+ q2e2 and d = q3eo- q,e2 are usual complex numbers. In this representa- 
tion we get 

q* = c*eo+ d*e3. 

The constraint q = q* means that q is a hyperbolic complex number. The Q conjugation 
allows us to define the square of the norm (qI2 of every element q of Q as follows: 

/ q l 2 = P q =  4 4 = ( 4 0 ) 2 - ( 4 1 ) 2 + ( 4 * ) 2 - ( q 3 ) 2 .  

We note that Q involves a set Q, of zero divisors (i.e. elements such that \ q I 2 = O ) .  
Therefore, Q is neither a division algebra nor a field (as the usual quaternion algebra) 
but a non-commutative ring. For every q and r in Q the following property: 

holds. This follows from the non-compact generalisation of the well known theorem 
of Hurwitz (Lambert and Kibler 1988) about composition algebras. The subset of Q 
with generic element q such that )qI2 = 1 is isomorphic to the three-dimensional 
hyperboloid H3(2, 2) where H"(u,  U )  denotes the n-dimensional manifold of Rn+* 
defined by the equation 

C (qi)*- C (qi) '=1 u + u = n .  
i = l ,  ..., U I = u + 1 ,  ..., u + v  

From the isomorphism H3(2, 2) = SL(2, R), it follows that Godel quaternions of unit 
norm provide a representation of the group SL(2, R) (Godel 1949, Ozsvath 1970, Hogan 
1984). For those preferring not to work with the generators e,, e , ,  e2 and e,, it is 
possible to construct a 2 x 2  matrix representation of Q over R. This is achieved by 
using the following identifications: 

eo[: y ]  el=[;  A] e.=[ -1 O 0 '3 e,=[' 0 -1 '1. 
From this, an arbitrary Godel quaternion q of Q can be identified with the 2 x 2  real 
matrix: 

[ ;5 
This shows in fact that Q is isomorphic to the ring R(2) of real 2 x 2  matrices. 
Furthermore, it is worth recalling that Q can be viewed as the Clifford algebra 
C(2,O) C(1, l ) ,  which is precisely isomorphic to R(2) (Porteous 1969). 

3. The group G u n ,  Q) and its subgroups 

Let Q" be the set of all n x 1 matrices with elements in Q. Due to the fact that Q is a 
ring and not a field, Q" is not a vector space but a Q module. We now define the set 
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GL(n, Q) of all invertible and R-linear mappings: Q" + Q". An arbitrary element F of 
Q" can be written as follows: 

= 1 f"e ,  = 1 f i k e i k  
F =  [ F" r ]  ,=o, ,3 z ,k=1,2  

where f" and f I k  are real n x 1 matrices defined by 

f * =  [ F'] f ' k  =[ F:i] 

F; F:k 

and 

F J =  FGe,= c F{ke,k 
"=o, ,3 i ,k = 1,2 

according to (2.1) and (2.5). From this, it follows that GL(n,Q) is the group of all 
invertible n x n matrices over Q. Let A and B be matrices of GL(n, Q). According to 
(2.1) and (2.5), we get 

A =  ACLe,= 1 Aikeik 

B =  1 B"e, = 1 Bikeik 

p = o ,  ..., 3 i , k = 1 , 2  

p=o,  ..., 3 i , k = 1 , 2  

(3.1) 

where A,, B, and A i k ,  Bik  are n x n real matrices. 

expression: 
Let us now consider the map J : GL( n, Q) + GL(2n, R )  defined by the following 

Using (3.1) and the multiplication law (2.4) we check that 

J ( A B )  = J ( A ) J ( B ) .  (3.3) 

Thus, J defines a group homomorphism between GL(n, Q )  and GL(2n, R).  Hence, it 
is possible to show that J is in fact an isomorphism. Then we have the following 
identification: 

GL(n, Q) = GL(2n, R). 
Let us now exhibit some relevant subgroups of GL(n, Q). It is worth recalling that if 
A belongs to GL(n, Q), then, according to 0 2, the following constraints: 

A = A  A = A  A * = A  

mean that A is a n x n real, complex and hyperbolic complex matrix, respectively. We 
now introduce particular subsets of GL(n, Q) given by 

GL(n, 0 )  = { A  E GL(n, Q): A= A }  

GL(n, 6 )  = { A  E GL(n, Q): A = A }  

GL( n, Q*) = { A  E GL( n, Q): A* = A } .  

(3.4) 

(3.5) 

(3.6) 
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It is now straightforward to check that these subsets are in fact subgroups. Furthermore, 
we have the following identifications: 

GL( n, a) -- GL( n, R) G L (  n, 6) = G L (  n, C) (3.7) 

Then it is easy to see that the following relation: 

GL( n, Q*) = GL( n, a). 

G L ( ~ ,  Q) = G L ( ~ ,  6) n G L ( ~ ,  a*) 
holds. 

the following equation: 
In the following, we will use the map T defined for every matrix A of GL(n, Q) by 

I 

A' = (A)' (3.8) 

where T denotes the usual matrix transposition. Using the isomorphism J (3.2) and 
the definition (3.8), we get 

J ( A ' )  = J(A)T. (3.9) 

Then we are able to prove that T is an anti-involution of GL(n, Q). We have to check 
the condition 

( A B ) ' =  B'A' 

for every matrix A and B in G L ( n ,  Q). Using (3.3) and (3.9), we get 

J ( ( A B ) ' )  = J(B)TJ(A)T= J(B' )J (A' )  

and 

J(B'A') = J(B' )J (A' ) .  

According to the fact that J is a group isomorphism, we can complete the proof. Let 
us define the matrix E, of GL( n, Q) by the equation 

E, = e,U, p=O,1,2,3 

where U,  denotes the n x n unit matrix. We can easily check the following equations: 

(3.10) 

(3.11) 

These follow from (2.2) and (2.3) which give 

eo=e11+e22 

e1 = e12+ e21 

e3 = e11 - e22 

e1 = e12 - e21 
and from the definition of the isomorphism J. The anti-involution T and the matrices 
E, can be used to define new subgroups of GL( n, Q). Let us first consider the subsets 
0, (n, Q) of GL( n, Q), with p = 0, 1, 2 and 3, defined by 

O , ( n , Q ) = { A E G L ( n , Q ) :  A'E,A=E,}. (3.12) 
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These subsets, which happen to be subgroups of GL(n, Q), will be called orthogonal 
groups over Q. From (3.3), (3.9) and (3.11), we get the following identifications: 

(3.13) 

(3.14) 

(3.15) 

O,( n, Q) = O(2n) 

O,( n, Q) = O,( n, Q) = O( n, n )  

O d n ,  Q) = Sp(n, RI.  

Referring to (3.12) and (3.7), we also check that 

OF(  n, Q) n GL( n, a) = O ( n )  

The group GL(n, 6) leads to the following equations: 

p = O , l , 2 , 3 .  

O,(n, Q) n G L ( ~ ,  6) = O J ~ ,  Q) n G L ( ~ ,  6) = U(n) 

0,( n, Q) n GL( n, 6) = 03( n, Q) n GL( n, 6) -- O( n, C).  

Finally, the group GL( n, Q*) gives rise to the following identifications: 

On( n, Q) n GL( n, Q*) = 03( n, Q) n GL( n, Q*) = O( n, R) 

O,( n, Q) n GL( n, Q*)  = 02( n, Q) n GL( n, Q*) = U( n, R). 

In this last case, we find hyperbolic complex orthogonal and unitary groups O( n, R) 
and U( n, R) which were introduced by Zhong (1984, 1985). According to Zhong 
(1985), we can get the following isomorphisms: 

U( n, R) = GL( n, R). O( n, R) = O( n )  x O( n )  

It is also possible to introduce pseudo-orthogonal groups over Q. For this purpose, 
let us consider the matrix Dpq of GL(n, Q) defined by 

Dp4 = Kp,en + (1, - Kpq )e3 p + q = 2 n  

where Kp4 is the n x n real matrix given by 

Kpq = 0, P = 4  

with 0, denoting the q x q null matrix. Through the map J, the matrix Dp4 becomes 

This can be seen by writing Dpq in the basis (2.2) and (2.3). More precisely, we have 

4 4  = L(e11- e221 

O( p, q ;  Q) = {A E GL( n, Q): A’Dp,A = Dpq} 

P = 4. 

Now let us consider the subset O(g, q ;  Q) of GL(n, Q) defined by 

p + q = 2 n  P ” 4 .  
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We easily check that this subset is a subgroup of GL(n, Q). Furthermore, after a 
straightforwad computation, we get the following isomorphism: 

O(P, 4 ;  Q) = O(P, 4 )  P 2 4 .  

Finally, we have to investigate unitary-like groups over Q. For this purpose, we 
introduce two new conjugations on GL(n, Q). We define, for every matrix A of 
GL(n, Q), the matrices At and A" given by 

A+ = (A')* A" =(AT) = (A)T. (3.16) 

From (2.6)-(2.8), it comes that 

At = e3ATe3 A" = -e,A'e,. (3.17) 

We now introduce, for each p = 0, 1, 2 and 3, the subsets 

U:'( n, Q) = { A  E GL( n, Q): AfE,A = E,}  

U p ' ( n , Q ) = { A E G L ( n , Q ) :  A#E,A= E,} .  
(3.18) 

These subsets, which happen to be subgroups of GL( n, Q), will be called unitary groups 
over Q. From (3.17), we can easily check that the equation 

A+E,A = E, 

implies the following identity: 

AT(e3e , )A = (e3e,)l , , .  

According to the multiplication law of Godel quaternions we get 

e 3 ,  e =e3- , .  

Then, from (3.12) we get the following identification: 

U:'(n ,Q)=O,- , (n ,Q) .  

From (3.17), it follows that the condition 

A#E,A= E,  

(3.19) 

can be written 

A'(e,e,)A = (e,e,)U,. 

Using the multiplication table of Godel quaternions and definition (3.12), we get the 
following identifications: 

U6#'(n, Q) = O,(n, Q) U ! # ) =  0 2 ( n ,  Q) (3.20) 

U:"'(n, Q) = O,(n, Q) Uy '=O, (n ,Q) .  (3.21) 

All the relations (3.19)-(3.21) show that the unitary groups over Q are, in fact, 
orthogonal groups over Q. The group Ub#)(n, Q) is the analogue of the usual unitary 
group U ( n ) .  This can be seen by identifying e, with the real unit and introducing 
(3.16) in the definition (3 .18) .  

In figure 1 ,  we summarise results of $ 3. Lines denote identifications (isomorphisms) 
and arrows denote canonical inclusions. 
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Oo(n, Q)-u$+’(n, Q)-U:#’(n, ~ ) - 0 ( 2 n )  

Figure 1. The group GL(n, Q) and its subgroups. 

4. A pseudo-Hopf fibration 

Let q and r be arbitrary Godel quaternions defined by 

4 = 40eo+ 41e1+ 42e2+ 43e3 r = roeo+ rlel + r2e2+ r3e3. 

We define the map F : Q x Q + R x Q as follows: 

F ( 4 ,  r)=(1412-lr12,2q~). (4.1) 

ls12 = 1. (4.2) 

Let s be a Godel quaternion such that 

Then we check that the following property: 

F(qs,  rs) = F ( 4 ,  r )  (4.3) 
holds for all q and Y in Q. From (4.2), (4.3) and § 2, we exhibit the 02( 1, Q) = SL(2, R) 
fibre of E The map F induces a mapf :R8+Rs defined by X =f(  U ) ,  where U is the 
eight-dimensional real vector given by UT = (qo,  ql, q2,  q3, ro ,  rl , r 2 ,  r3)  and X is the 
five-dimensional real vector such that XT = ( X I ,  X2 , X 3  , X,, X,) and 

XI = ( 4 O l 2  - ( 41 l2  + ( 4 2 1 2  - ( 4 J 2  - ( r0l2 + ( IZ - ( r2I2 + ( r3I2 

X 2 = 2 ( 4 0 r o - 4 1 r , + 4 2 ~ 2 - 4 3 ~ 3 )  

x4 = 2( q2ro - qor2  + 41 r3 - q3Yl 1 
x3 = 2( 41 - 4Or1 + q2r3 - q 3 r 2 )  (4.4) 

x, = 2(q,ro - q0r3 + 41 r2 - 4 2 r J .  

XThX = ( UTNU)’ (4.5) 

By a straightforward computation, we get 

where h is the 5 x 5 matrix defined by h = diag(1, 1, -1, 1, -1) and N is the 8 x 8 matrix 
given by N = diag(1, -1, 1, -1, -1, 1, -1). If we restrict f to the hyperboloid H7(4, 4) 
we get, according to (4.5), the map f: H7(4, 4) + H4(3, 2). From (4.3) we easily see 
that f is a fibration of fibre SL(2, R). In a previous work (Lambert and Kibler 1988), 
we have introduced this fibration from a different point of view and we have called it 
a pseudo-Hopf fibration. The hyperboloid H7(4,4) (respectively H4(3, 2)) is homeo- 
morphic to R4 x S3 (respectively R2 x S 2 ) .  Then, because of the well known result: 
.rr3(S2) = Z, we see that f is a non-trivial fibration (Steenrod 1974). 
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Let (MI,  8,) (respectively ( M,, g,)) be a pseudo-Riemannian manifold of dimension 
m ,  (respectively m,) endowed with the metric g, (respectively gz). Then, a smooth map 

Y : ( M , , g , ) + ( M , , g , ) : x = ( x I  ) . . . ,  xml)+ Y ( x ) = ( Y ' ,  . . . ,  Y"2) (4.6) 
is said to be a harmonic map (Eells and Lemaire 1978) if and only if 

where (')I'& (respectively ','r;,,) denotes the Christoff el symbol of the Levi-Civita 
connection of g, (respectively g,) and 1 =s a, p, y G m, ; 1 S m, n, 1 < m,. Then, we get 
the following proposition. 

Proposition 4.1. The map f: (R8, N ) +  (R5, h )  defined by (4.4) is harmonic map. 

Proof: The manifolds (Rs, N )  and (R5, h )  are flat. Therefore, the Christoffel symbols 
vanish in (4.7). Now, it is easy to check that the following equations: 

x = o  a2 Nap ____ 
ax" axp ' 

hold. This completes the proof. 

We now introduce the definition of a harmonic morphism (Eells and Lemaire 1984). 
Let us consider the differential of the map Y (4.6) at the point x of MI, i.e. the map 
d Y ( x ) :  T,M,+ Ty, , )M, .  Let ker(dY(x)) be the kernel of this map. Because of the 
metric g, we are able to define the orthogonal complement HOR(x) of ker(dY(x)) in 
T'M, . Hence, we get the following decomposition: 

T'M, = ker(dY(x))OHOR(x).  (4.8) 
Then each vector 2 of T,M, can be written as follows: 

z = z ( W + Z ( H )  

where 2 ' " ~  ker(dY(x)) is called the vertical part of 2 and Z ( H ) ~  HOR(x) is called 
the horizontal part of 2. Now, the map Y (4.6) is said to be horizontally conformal 
if and only if, for each x E MI,  such that d Y(x) # 0 and for all 2, V E T,M, we have 

(dY(x)Z, d Y ( x )  V), = k(x)(2(H' ,  V(H')I (4.9) 
for some function k : M I  + R. Here, ( , e ) ,  (respectively ( * , .),) denotes the bilinear 
form on T,M, (respectively Ty,,.M2) induced by g, (respectively g,). Finally, the map 
Y is called a harmonic morphism if and only if Y is a harmonic and horizontally 
conformal map. Then we get the following proposition. 

Proposition 4.2. The map f :  (R8, N )  + (R', h )  is a harmonic morphism. 

Proof: From (4.4) we see that ker(df( U ) )  is generated by the vectors 

(4.10) 
a 
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From this it follows that HOR( U )  is generated by the following vectors: 

a a )  
H3 = -rl -- ro -+ r, -+ r ,  -+ q1 -+ qo -- q3 -- q2 - ( aqo aqi a q 2  aq3 ar0 a r ,  ar ,  ar3 

a a )  H4 = - r,  - - r3 -+ r, -+ rI -+ q, -+ q3 - - qo - - q1 - ( a40 aqi aq2 aq3 aro ar, ar, ar3 

a 7 aqo 2aq1 l a q ,  as3 ar, ar,  ar, ar ,  

d a a a a a 

a a a a a a 

a a a a a a 
H - - r  - - r  - - r  --ro-+q3-+q2-+q1-+q0- . 5 - (  3 

(4.11) 

Let Z and V be arbitrary vectors of TuR8. Using (4.10) and (4.11) it is straightforward 
to check that 

(4.12) (df( U)Z)Th(df( U )  V) = k(  U)(Z'H')TN( V'H') 
where k(  U )  is given by the following equation: 

k(  U )  = 4( U T N U )  
Comparing (4.9) and (4.12), we see thatf is horizontally conformal. From proposition 
4.1, f is also harmonic. This completes the proof. 

It is worth noting that K , ,  K ,  and K ,  are in fact generators of the Lie algebra of the 
group SL(2, R). Starting from (4.10), we get the following commutation rules: 

[Kl,  &I= -2K3 [ K2, K3I = -2Ki [ K 3 ,  K11=2K*. 
Let us endow H7(4, 4) (respectively H4(3, 2)) with the metric g' (respectively g").  
Then we have the following proposition. 

Proposition 4.3. The pseudo-Hopf fibration f : (H7(4, 4), g ' )  + (H4(3, 2), 8") is a har- 
monic map. 

ProoJ Let us first consider a general compact case. Let 4 : R" + R" be a map whose 
components are harmonic homogeneous polynomials and suppose that 4 ( S"-') E S"- ' .  
Then we know (Smith 1975) that the restriction 4 ' :  Sm-l+ S"-' of 4 defines a harmonic 
map. Now let V : R4p + RZp+' be a map whose components are harmonic homogeneous 
polynomials and such that 2 p ) )  c H 2 P ( p  + 1 ,  p ) .  Everthing being algebrai- 
cally similar to the compact case, the whole proof of Smith can be repeated here word 
for word. Hence, we get that the restriction V': H4p-'(2p, 2 p )  + H 2 p ( p  + 1, p )  of W 
defines a harmonic map. Proposition 4.3 happens to be a particular case of this result 
with p = 2. 

5. Sigma models on a four-dimensional hyperboloid 

Let ( M ,  g )  be an arbitrary pseudo-Riemannian manifold endowed with the metric g.  
We define a smooth field X : M + H4(3, 2 ) :  x ( x w )  + X ( x )  = ( X ' ( x ) ) .  Using the nota- 
tions of $ 4 ,  we have the following constraint: 

X ( x ) T h X ( x )  = 1. (5.1) 
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The sigma model defined on M and with values on H4(3,  2)  is a field theory defined 
by the following Lagrangian density: 

a a 
L ( X ( X ) )  = t g p v s  ax X ( x ) ? I ,  X ( x ) .  (5.2) 

The Lagrangian density leads to the equations of motion: 

a a 
ax” ax 

o x ‘ ( x )  + g w y r  f, - x m ( x )  , X ~ X )  = o 1 < 1 < 5  (5.3) 

where r!,,, is the Christoffel symbol of the Levi-Civita connection on H4(3,  2)  and 
where 0 denotes the Laplace-Beltrami operator associated with M and is given by 

(5.4) 

From (4.7), (5 .3)  and (5.4) it follows that X defines a harmonic map. A straightforward 
computation shows that (5.3) can be written as follows: 

X ( X ) T h ,  X ( x )  X ’ ( X )  =o.  
ax a )  

O X ‘ ( x ) + g / * ”  - 
(a:* ( 5 . 5 )  

We are now going to define equivalent forms of the Lagrangian density (5.2). We start 
with a smooth field n : M + Q 2 : x + n ( x ) ,  where n ( x ) T = ( q ( x ) r ( x ) ) ,  with q ( x ) =  
~ o ( x ) ~ o +  q l ( x )e l  + q2(x)e2+ qdx)e3 4 x 1  = ~ o ( x ) ~ o +  r l ( x )e l  + r2(x)e2+ rdx)e ,  
being two smooth Godel quaternionic fields. Using the notation (3.16) extended to 
Godel quaternionic vectors, we introduce the Lagrangian density L,(  n ( x ) )  given by 

and 

Ll( n ( x ) )  = g/””(D,n ( X I )  + Dvn ( X I  (5.6) 
with the following constraint: 

n ( x ) ” n ( x )  = 1q(x)j2+jr(x)j2= I .  

Furthermore, we define D,n(x) as the following vector: 

a 
D,n(x) =- n ( x )  - n(x )A , ( x )  

ax,  

with 

a a 
ax,  axw 

A, = 4 ( ~ )  - q ( x ) +  F ( x )  ~ r (x ) .  

From (5.7), we immediately check that 

A+ ( x ) = -A, ( x ) . 
Hence, the 1-form A ( x )  defined by 

A ( x )  = A,(x)  dxp 

can be written 

= ol(x)el+w,(x)e:+w,(x)e ,  
where 

(5.7) 

(5.8) 

w l = q o d q , - q ,  d q 0 + q 2 d q , - q ~ d q , + r ~ d r , - r ,  d ro+r2dr3- r3drz  

(5.9) 
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w2=90dq2-q2dq0+q1 dq,-q3dq,+rodr2-r2dr ,+ri  dr3-r3 dr, 

w3 = 4 0  dq, - q 3  dqo+ q1 dq2 - q 2  dq, + ro dr, - r3 dro+ rl dr, - r2 dr, . 
These forms are in fact related to the vector fields K1, K 2  and K ,  (4.10) by the following 
equations: 

w,(K,)  = -70 

where 7 = diag(1, -1, 1). Let us now consider the transformation given by 

n ( x ) +  n ' ( x )  = n ( x ) s ( x )  Is(x)12= 1. (5.10) 

Under this transformation, A,  ( x )  becomes 

d 

ax" 
A ; ( X )  = S ( X )  - s ( x ) + S ( X ) A , ( X ) S ( X ) .  (5.11) 

From (5.10) and (5.11) we get 

DLn'(x) = ( D , n ( x ) ) s ( x ) .  (5.12) 

Furthermore, from 9 2 and (5.12), we easily check that L , ( n ( x ) )  is a SL(2, R)-invariant 
Lagrangian density. Finally, (5.10)-(5.12) show that (5.6) defines a gauge field theory 
with gauge field A , ( x )  and gauge group SL(2,R). We now define the vector U ( x )  
such that U(x) '=  (qo(x)ql(x)q2(x)q3(x)ro(x)r,(x)r2(x)r3(x)). Using the above defined 
notations, we set 

X ( X )  =f( U ( X ) ) .  (5.13) 

According to (4.5) and (5.7), we have 

X ( x ) T h X ( x )  = ( U ( x ) T N U ( x ) ) 2 =  1. 

Therefore, (5.13) becomes X ( x )  = f (  U ( x ) ) .  Let us consider the Lagrangian density 
L ( X ( x ) )  associated with the field X ( x )  and defined by (5.2). Then we get the following 
result. 

Proposition 5.1. We have 

L ( X ( X ) )  = L , ( n ( x ) )  

i.e. the pseudo-Hopf fibration f reduces (5.6) to ( 5 . 2 ) .  

Proof: Using (5.6) and (5.8) we can write 

(5.14) 

Starting from (4.4) and (5.15), we get (5.14) after a long but easy computation. 

(5.15) 

From the field X ( x )  (5.13) such that X(x) '=  ( X , ( x ) ,  . . . , X , ( x ) ) ,  we introduce the 
Godel quaternionic field W : M + Q : x +  W ( x )  = Wo(x)eo+ W , ( x ) e , +  W 2 ( x ) e 2 +  
W 3 ( x ) e 3 ,  where 

Wk(X) = Xk+2(X)/(l  + X l ( X ) )  O s k s 3  X , ( X )  # -1. (5.16) 
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In fact, (5.16) defines the stereographic projection of the manifold H =  
{ ( X I , .  . . , X,) E H4(3, 2): XI Z -1> to the hyperplane XI = 1 (endowed with the metric 
diag(1, -1, 1, -1)) with centre ( X I , .  . . , X,) = (-l,O, . . . , O ) .  By a straightforward 
computation we get L(X(x) )  = L,( W(x))  where 

L2( W(X>) = g’*”(l + I  W(X)l 2 - 2 a  dxp W(X) - 2 a W X ) .  (5.17) 

Now let P( W(x)) be the matrix field defined by 

[ w‘(.x) 3 1 W(x) l*#- l .  
W(X) lW(X)l2 

P( W(x)) = (1 + I W(x)l2)-’ 

We introduce the following Lagrangian density: 

L,(P( W ( x ) ) ) = $ T r ( g p ’ - P y P ) .  a d  
ax’* dx 

Then we get the following proposition. 

Proposition 5.2. We have 

L(X(X)) = L,(P( W(X))). 

(5.18) 

(5.19) 

(5.20) 

Prooj Using (5.18) and (5.19) we get L,(P( W(x)) )  = L2( W(x)) .  We know that 
L2( W(x)) = L(X(x)) .  This completes the proof. 

The geometrical meaning of (5.20) is given by the following proposition. 

Proposition 5.3. The Godel quaternionic field P( W(x)) parametrises a point on the 
hyperboloid H4(3, 2). 

ProoJ From (5.18) we see that the equations 

P( W(x))’= P( W(X)) 
hold. This means that P (  W(x)) is a projector on a one-dimensional submodule of 
Q2. Referring to the usual quaternionic case (Berger 1987), we see that P( W(x)) lives 
on the coset 

(5.21) 

P( W(X))* = P( W(X)) Tr( P( W( x))) = I 

Ub#’(2, Q)/ up’( 1, Q) x Ub*’( 1, Q) 
where we have used the notation (3.18). Using (3.15) and (3.20), (5.21) becomes 

SP(2, R)/SP(l, R) x SP(1, (5.22) 

which is a pseudo-Riemannian symmetric space (Berger 1957). Now, according to the 
following results (Barut and Raczka 1986), 

Sp( 1, R) = SL(2, R) Sp(2, R) = S0(3 ,2)  
and 

SL(2, R) x SL(2, R) = S0(2,2)  

the coset (5.22) can be identified with S0(3,2) /S0(2,2) ,  which is nothing other than 
the hyperboloid H4(3, 2) (Wolf 1974). Finally, it is worth writing the field equation 
associated with (5.19). From ( 5 . 5 ) ,  (5.16) and (5.18) we get 

(5.23) [ P (  W(X)), UP( W ( x ) ) l =  0. 
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Lagrangian densities (5.17) and (5.19) happen to be generalisations of Lagrangian 
densities either of the @PI sigma model (Giirsey and Tze 1980) or of the RP’  sigma 
model (Lambert and Piette 1988). Therefore (5.21) can be seen as the projective 
quaternionic space QP’. Though the non-commutative ring Q involves zero divisors, 
we have proved elsewhere that it is possible to define projective spaces QP“ (Lambert 
1988). 

6. Explicit solutions 

A general method for solving equation (5 .23)  is not known. We simply give here three 
examples of particular solutions. 

(i) Let M be the hyperboloid H 4 ( 3 ,  2) endowed with the metric g defined as follows: 

g ( x )  = h’/(  1 + XTh’X)2 XTh’X # -1 

where h’= diag(1, -1, 1, -1) and x T =  ( x o  x ,  x2 x 3 ) .  We introduce the Godel quater- 
nionic field W : H 4 ( 3 , 2 ) + Q : x +  W(x)=xoeo+x,e,+x,e,+x3e,. It is now easy to 
check that P (  W ( x ) )  is a solution of the equation (5 .23) .  This solution happens to be 
the non-compact generalisation of the ‘instanton’ of the sigma model defined on S4 
and with values on the usual quaternionic projective space WP’ (Gava et a1 1979, Fujii 
1985). 

(ii) Let us consider a particular metric g on the hyperboloid H 4 ( 3 ,  2) = M. We 
introduce the harmonic homogeneous polynomial P ( x )  = P ( x o ,  . . . , x 4 )  of degree three 
given by 

P ( x 0 ,  . . . , x 4 )  = f ( x ;  - 3 x 0 ~ :  - $ x ~ ( x :  + 2 ~ :  + x: )  +$&x,(x:  - x: )  + ~ & x , x ~ x , ) .  (6.1) 

It is then possible to define the field X : Rs + Rs given by 

X ( x )  = V P ( X ) .  (6.2) 

V P ( x ) T h V P ( x )  = (XThX),. (6.3) 

From (6.1), we easily check that P ( x )  satisfies the following equation: 

Polynomials satisfying (6.3) are called ‘eikonals’ in the language of of geometrical 
optics. From ( 6 . 2 ) ,  we see that the components of X ( x )  are harmonic homogeneous 
polynomials of degree two. Furthermore, from ( 6 . 3 )  it follows that X ( H 4 ( 3 ,  2 ) )  G 
H4(3,2).  BAy a straightforward computation, it is now possible to show that the 
restriction X : H4(3, 2 )  + H 4 ( 3 ,  2 )  of the field X defines a harmonic map (i.e. satisfies 
equation ( 5 . 5 ) ) .  Using the stereographic projection (5.16), we define the Godel quater- 
nionic field @: H4(3, 2) + Q : x + * ( x )  = G o ( x ) e 0 +  @ , ( x ) e 1  + k 2 ( x ) e 2  + G 3 ( x ) e 3  such 
that 

* k W  = &+2(x)/(1 +-%(x)) O < k < 3  &x)  # -1. 

Using an explicit form for the metric g, we finally check that P (  @ ( x ) ) ,  defined from 
(5.18), is a solution of (5 .23) .  

(iii) Let M be the four-dimensional manifold endowed with the following metric: 

g ( x )  = h ’ / ( x T h ‘ x )  xTh’x  > 0 

where xT = ( x o x 1 x z x 3 ) .  We define the Godel quaternionic field W :  M + Q as follows: 

W (  x )  = ( xOeO + x ,  e ,  + x2e2 + x 3 e 3 ) /  ( ~ ~ h ’ x ) ’ ’ ~ .  
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Referring to (5.18), we define the projector P( W ( x ) ) .  A straightforward computation 
shows that P (  W ( x ) )  is a solution of equation (5.23). According to the language of 
Yang-Mills theories we call this solution a generalised ‘meron’ (de Alfaro et a1 1976). 
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